
AGRICULTURE OR SOIL RESEARCH
Shanmugam , S., Jenkins, S.N., Mickan, B.S., Jafaar, N., Mathes F., Solaiman, Z.M. and L.K. Abbott. 2021. Co-application of a biosolids product and biochar to two coarse-textured pasture soils influenced microbial N cycling genes and potential for N leaching. Sci Rep 11, 955. https://doi.org/10.1038/s41598-020-78843-9
Mickan, B., Abbott, L.K., Solaiman, Z.M., Mathes, F., Siddique, K.H.M. and S.N. Jenkins. 2018. Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biology and Fertility of Soils. https://link.springer.com/article/10.1007%2Fs00374-018-1328-z
Pham, V.T.H., Murugaraj, P., Mathes, F., Tan, B.K., Truong, V.H., Murphy, D.V. and D.E. Mainwaring. 2017. Copolymers enhance selective bacterial community colonization for potential root zone applications. Scientific Reports 7, 15902. https://doi.org/10.1038/s41598-017-16253-0
Lowe, M.A., McGrath, G., Mathes, F. and M. Leopold. 2017. Evaluation of surfactant effectiveness on water repellent soils using electrical resistivity tomography. Agricultural Water Management 181: 56-65. https://doi.org/10.1016/j.agwat.2016.11.013
Gleeson, D.B., Mathes, F., Farrell, M. and M. Leopold. 2016. Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory. Science of The Total Environment 571: 1407-1448. https://doi.org/10.1016/j.scitotenv.2016.05.185
Mathes F., Murugaral, P., Bougoure, J., Pham, V.T.H., Truong, V.K., Seufert, Wissemeier, A.H., Mainwaring, D.E., and Murphy, D.V. 2020. Engineering rhizobacterial community resilience with mannose nanofibril hydrogels towards maintaining grain production under drying climate stress. Soil Biology and Biochemistry 142: 107715. https://doi.org/10.1016/j.soilbio.2020.107715
Lowe, M.-A., Mathes, F., Loke, M.H., McGrath, G., Murphy, D.V., Leopold, M. 2019. Bacillus subtilis and surfactant amendments for the breakdown of soil water repellency in a sandy soil. Geoderma 344: 108-118. https://doi.org/10.1016/j.geoderma.2019.02.038
O’Brien F.J.M., Almaraz M., Foster M.A., Hill A.F., Huber D.P., King E.K., Langford H., Lowe M.-A., Mickan B.S., Miller V.S., Moore O.W., Mathes F., Gleeson D. and M. Leopold. 2019. Soil Salinity and pH Drive Soil Bacterial Community Composition and Diversity Along a Lateritic Slope in the Avon River Critical Zone Observatory, Western Australia. Frontiers in Microbiology 10: 1486. https://doi.org/10.3389/fmicb.2019.01486
Vithana, M.D.K., Singh, Z., and S.K. Johnson. 2019. Regulation of health-promoting compounds in mango fruit: a review. Journal of the Science of Food and Agriculture 99: 3740-3751. https://doi.org/10.1002/jsfa.9628
Vithana, M.D.K., Singh, Z., and S.K. Johnson. 2019. Harvest maturity stage affects the concentrations of health-promoting compounds: lupeol, mangiferin and phenolic acids in the pulp and peel of ripe ‘Kensington Pride’ mango fruit. Scientia Horticulturae. 243, 125 – 130. https://doi.org/10.1016/j.scienta.2018.08.019
Vithana, M.D.K., Singh, Z., and S.K. Johnson. 2018. Concentrations of health-promoting phytochemicals in ripe mango fruit triggered by postharvest application of elicitors. Journal of the Science of Food and Agriculture. DOI: 10.1002/jsfa.9280. https://doi.org/10.1002/jsfa.9280
Vithana, M.D.K., Singh, Z. and S.K. Johnson. 2018. Cold storage temperatures and durations affect the concentrations of lupeol, mangiferin, phenolic acids and other health-promoting compounds in the pulp and peel of ripe mango fruit. Postharvest Biology and Technology 139: 91-98. https://doi.org/10.1016/j.postharvbio.2017.12.003
Vithana, M.D.K., Singh, Z. and S.K. Johnson. 2018. Dynamics in the concentrations of health-promoting compounds: lupeol, mangiferin and different phenolic acids during postharvest ripening of mango fruit. Journal of the Science of Food and Agriculture 98: 1460-1468. https://doi.org/10.1002/jsfa.8614
Vithana, M.D.K., Singh, Z. and S.K. Johnson. 2018. Levels of terpenoids, mangiferin and phenolic acids in the pulp and peel of ripe mango fruit influenced by pre-harvest application of FeSO4 (Fe2+), MgSO4 (Mg2+) and MnSO4 (Mn2+). Food Chemistry: 256: 71-76. https://doi.org/10.1016/j.foodchem.2018.02.087